ACGIH Updates

Celebrating 85 Years

Leadership

TLV/BEI Process

 Understudy Draft Documentation Notice of Intended Changes (NIC) • Public comment/Revision Adopted Documentation

TLV/BEI Process

TLV/BEI Process

Education

Publications

TLV Updates

Adopted

Acetamiprid
Benzoquinone
Di(2-ethylhexyl) phthalate
Divinylbenzene-ethyl styrene
mixture
2-Ethyl-1-hexanol
Ethylene glycol dinitrate
Glycidyl methacrylate
Glyphosate
Iodine and iodides

Adopted

Methylnaphthalene, all isomers n-Propyl nitrate Phenothiazine Propylene glycol dinitrate Silicon carbide Tetrachlorvinphos Vinyltoluene, all isomers

TLV Updates

NIC

Bensulide

Buprofezin

Dimethenamid-P

Endotoxins

Ethylene glycol dimethyl ether

Phenylethyl alcohol

Sevoflurane

Triclosan

NIC

Acetylsalicylic acid

Formic acid

Halothane

Methyl ethyl ketone

Tertiary butyl hydroperoxide

Benzene

Nitric acid

Trimetacresyl phosphate

Triparacresyl phosphate

BEI Updates

Adopted

Acrylamide
2-Ethoxyethanol and
2-Ethoxyethyl acetate
NN-Dimethylacetamide
Furfural
Styrene

NIC

Platinum
Arsenic (and soluble inorganic compounds)

Xylenes (technical or commercial grades)

Negative Feasibility

3,3'-Dichlorobenzidine Ethylene glycol

Physical Agents Update

Vent Manual

Chapter 14

SPECIAL TOPICS AND TECHNIQUES

NOTE: Equations with notation followed by (IP) are designated for inch-pound system only; equations followed by (SI) are designated for metric use only. If equation bears neither, then it applies to both systems.

14.1 INTRODUCTION. 14-2 14.2 COMBUSTIBILITY OF DUST 14-2	14.4 EPA METHOD 204
14.3 VENTILATION TECHNIQUES FOR ENGINEERED NANOMATERIALS 14-4	Temporary Total Enclosure
14.3.1 Controlling Potential Worker Exposures using	14.4.2 Summary of Method
Engineering Controls	14.5 VENTILATION TO REDUCE SPREAD OF AIRBORNE VIRUS 14-9
14.3.2 Local Exhaust Ventilation	14.5.1 Hierarchy of Controls
14.3.3 Collection Efficiency of Filters for Engineered Nanomaterials 14-5	14.5.2 Basic Principles for Ventilation in an Industrial Setting
14.3.4 Exposure Control Technologies for Common Processes 14-5	for Infection Control
14.3.5 Intermediate and Finishing Processes 14-7	14.5.3 Administrative Controls
14.3.6 Maintenance Tasks	14.5.4 Important Suggested Measures
14.3.7 Summary and Conclusions	REFERENCES
Figure 14-1. Fire triangle	Figure 14-6. Hierarchy of controls
Figure 14-2. Fire triangle with dispersion	Figure 14-7. Appropriate supply/exhaust configuration
Figure 14-3. Dust explosion pentagon	Figure 14-8. Ventilation for mixing and displacement
Figure 14-4. Exposure control of particles	Figure 14-9. Filtration efficiency at different particle sizes for different
Figure 14-5. US EPA method 204	MERV efficiencies

Chapter 13 ENERGY EFFICIENCY FOR VENTILATION SYSTEMS

NOTE: Equations with notation followed by (IP) are designated for inch-pound system only; equations followed by (SI) are designated for metric use only. If equation bears neither, then it applies to both systems.

13.1 INTRODUCTION	10.3 ENERGY EFFICIENCY OPPORTUNITIES FOR INDUSTRIAL VENTILATION SYSTEMS
13.2.7 RACTORS AFFECTING THE ENERGY EFFICIENCY OF A VENTILATION	13.3.1 System Design. 13-9 13.3.2 Fan Selection 13-14 13.3.3 Energy Recovery 13-15 13.3.4 Energy Efficiency Measures for Industrial Ventilation Systems 13-19 ACKNOWLEDGMENTS 13-20

Other New Pubs

Partnerships

Contact Info

